
6. Two point charges of $-6.0 \,\mu\text{C}$ and $+6.0 \,\mu\text{C}$ are arranged at points A and B respectively as in the diagram. Point X lies as shown, with ABX being an equilateral triangle.

(a) Indicate clearly on the diagram the directions of

- (i) the electric field at X due to the charge at A (label it E_A), [1]
- (ii) the electric field at X due to the charge at B (label it E_B), [1]
- (iii) the resultant (net) electric field at X due to the charges at A and B (label it E_R). [1]
- (b) Calculate the magnitude of the resultant electric field at X, showing your working clearly. [3]

13 Examiner only Point Y is at a distance 0.40 m to the right of B. (c) $-6.0 \,\mu C$ +6.0 µC 0.20 m 0.40 m • Y В Determine the electric potential at Y. (i) [3] Calculate the work required to bring a small charge of $+2.0 \ \mu\text{C}$ from a distant (ii) point to Y. [2] The small charge has a mass of 5.0×10^{-3} kg. If it is released from rest at point Y, (iii) determine its speed when it returns to a distant point. [2]

7.

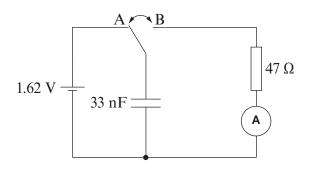
	Mean radius of planetary orbit / m	Orbital period / year	
Earth	149.6×10^{9}	1.00	
Jupiter	778.6×10^{9}	11.86	

(a) State Kepler's three laws of planetary motion.

(b) Show that the data above are consistent with Kepler's third law. [3]

Examiner only

[3]


	15	Examiner only
(c)	Explain what is meant by centripetal acceleration. [1]	
(<i>d</i>)	Calculate the mass of the Sun. [4]	
•••••		
•••••		

THERE ARE NO MORE QUESTIONS IN THE EXAMINATION

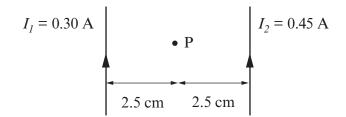
3. (a) (i) A capacitor has plates of area 8.2 × 10⁻⁴ m² and a separation of 0.77 mm. Calculate the capacitance of the capacitor assuming that there is air (or a vacuum) between the plates. [2]
(ii) Keeping the dimensions of the capacitor the same, how could you increase its capacitance? [1]

6

(b) Another capacitor is charged and discharged using the following circuit.

(i) Calculate the charge stored by the capacitor when fully charged. [2]

© WJEC CBAC Ltd.


(ii) The fully charged capacitor is now discharged through the 47 Ω resistor by moving the switch to B. Calculate the charge still remaining on the capacitor after it has been discharging for 50.0 μ s and comment on the magnitude of your answer. [3]

•••••		
·····		
•••••		•••••
·····		
•••••		
(iii)	The capacitor is charged and discharged a total of 20 000 times per second. Calculate the average current through the ammeter.	[2]
•••••		
•••••		•••••
•••••		
••••••		

4. (*a*) Sketch the magnetic field due to the current-carrying wire shown.

(b) Two long, straight wires carry currents as shown.

(i) Calculate the resultant magnetic field strength at point P in the above diagram and state its direction. [4]

Examiner only

[2]

© WJEC CBAC Ltd.

(ii) Explain why there is an attractive force between the two long wires in the diagram on the opposite page. [3]

- 5. Electrons flow through a gold wafer which is used as a Hall probe.
 - electrons flow out of the back face **B**-field 2.6 mm 0.85 mm electrons flow into the front face Explain which face of the wafer becomes negatively charged due to the Hall effect. (a)[3] The electric field due to the Hall voltage is 3.2×10^{-6} V m⁻¹. Calculate the Hall voltage. *(b)* [2]

(c) The following equation is used in conjunction with the Hall effect: eE = Bev. State what the forces eE and Bev are and explain why they are equal.

_____ The current flowing in the wafer is 0.82 A and the concentration of free electrons in gold is $5.9 \times 10^{28} \text{ m}^{-3}$. Calculate the magnetic field strength, *B*. [Hint: Use I = nAve] [3] (d).....

Examiner only

[2]

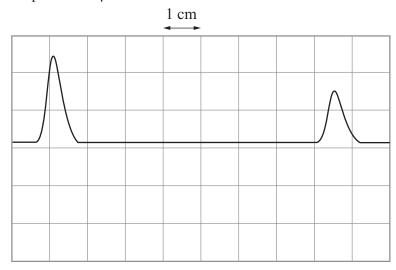
		12	Examine only
6.	(a)	State Faraday's law of electromagnetic induction. [2]	
	(b)	A circular copper heating ring works by being placed in a sinusoidally varying magnetic field. A large sinusoidal current is then induced in the ring and the ring becomes hot (see below).	
		resistance of copper ring = $2.3 \times 10^{-4} \Omega$	
		sinusoidally varying magnetic field strength B radius of ring = 4.5 cm	
		 (i) The maximum rate at which the magnetic field strength changes is 72 T s⁻¹. Show that the maximum current flowing in the ring is approximately 2000 A. [4] 	

13 Examiner Calculate the rms value of the induced current. (ii) [2] (iii) Calculate the mean power dissipated in the heating ring. [2]

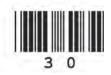
only

(ii)

Option D: Biological Measurement and Medical Imaging

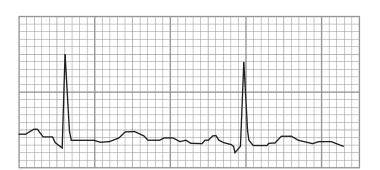

Examiner only

[1]


C11. (a) (i) Ultrasound can be used to carry out two different types of test, an amplitude scan (A-scan) and a brightness scan (B-scan). State the differences in the type of information obtained from an A-scan and a B-scan. [2]

Give an example of when a B-scan would be used in medicine.

(iii) An A-scan is used to determine the thickness of a layer of skin and fat in a patient's body. The grid below shows the interval between the initial pulse and the reflected pulse on a cathode ray oscilloscope (CRO). The time base is set so that 1 cm represents 2 μs.


(I) If the speed of ultrasound in skin and fat is 1.45×10^3 m s⁻¹, calculate the thickness of the layer of skin and fat. [3]

How would the trace on the opposite page change if no gel was placed (II) between the ultrasonic probe and the patient's skin? [1] _____ *(b)* (i) X-ray tubes use a hot wire to produce electrons. What happens to the X-ray output if the current to the hot wire increases? Explain your answer. [2] (ii) An X-ray tube accelerates electrons through a potential difference of 80 kV, giving a beam current of 0.45 A. Calculate: (I) the number of electrons reaching the target every second; [1] the maximum photon energy of the X-rays produced. (II)[1] (iii) Computerised axial tomography (CT scans) use a rotating X-ray tube to build up high contrast images of slices through the body. Explain why CT scans are not offered for regular checking of healthy patients. [1]

(c) Electrodes are placed on a healthy patient in order to record the electrical behaviour of the heart. One trace obtained is shown below.

32

Complete the graph by adding suitable axes, scales and units.

[3]

Examiner only

(d) Explain, briefly, how Magnetic Resonance Imaging (MRI) can produce detailed images of slices through the body. [3]

(e) When using ionising radiation in medicine the different types of radiation are given a Quality, or Q factor. Do beta particles have a higher, lower or the same Q factor as alpha particles? Explain your answer. [2]

